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Abstract—In the context of monitoring respiratory diseases,
an unobtrusive cough monitor is an attractive tool. Preferably,
such tool requires little or no customization. We address the
question of the feasibility of such a device. A large database of
sounds including coughs and other events was available. Using
deep learning, a general cough classifier was constructed. The
plug-and-play feasibility of such cough classifier is addressed by
a leave-one-patient-out procedure. For a large part of the cohort
(80%), the performance of the classifier is excellent meaning an
area under the curve (AUC) of larger than 0.9. On top of that,
estimates are derived for its success in practical scenarios by
considering the prevalence of cough and the required specificity.
It is shown that the acoustic environment can be harsh, requiring
very high specificities. From the results, we argue that for real-
world applications customization will be required. For part of the
population, it suffices to set a patient-specific operation point in
generic cough classifier, but for some part a personalized cough
classifier will be needed.

Index Terms—Respiratory diseases, COPD, cough, machine
learning, deep learning

I. INTRODUCTION

Cough is a characteristic associated with many respiratory
diseases. For chronic respiratory diseases like chronic ob-
structive pulmonary disease (COPD) and asthma, it is one
of the symptoms present in the associated questionnaires:
the COPD assessment test (CAT) and Asthma Control Test
(ACT), respectively. From a patient perspective, an unobtru-
sive measurement of health status is typically preferred over
obtrusive measurements and, presumably, over questionnaires
as well. From a clinician perspective, objective measurements
are considered very valuable and largely lacking in current
monitoring programs. Dyspnoea and cough were the most
reported symptoms at the onset of acute exacerbation of COPD
(AE-COPD) [1]-[3]. Cough in particular is a phenomenon that
can be captured in an unobtrusive way yielding an objectively
measured symptom [4].

Monitoring of patients at home would preferably be done
in a plug-and-play fashion: a device supplied to the patient,
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easy to install and almost directly usable. This would call
for a generic cough classifier, preferably one without the
need of customization, otherwise one with easy means of
customization. In this context, this paper studies the possibility
of constructing such a cough classifier for a particular cohort
of patients.

In a recent trial, data of COPD patients in their home
environment were collected. The data consist of one second
audio snippets of night-time recordings in the vicinity of
COPD patients, where the monitoring period ran over a period
of 90 days. Part of this data has been annotated and is used in
combination with a deep learning algorithm for classification
of coughs.

Several studies have reported on general cough classifiers,
e.g. [5]-[10]. These classifier were developed on other data
sets (patients, acoustic environments, sampling rates, features)
and are typically not publicly available. We therefore started
from scratch mainly to attain a model tailored to the current
data (patients and acoustic environments). Rather than going
for a competing cough classifier, the aim of this paper is to
obtain insight into requirements for cough monitors when used
in real home environments and, in particular, those of COPD
patients. Therefore, estimates of the prevalence of coughs have
been made as well, in order to define requirements for the
cough classifier. The results of this study are a stepping stone
in realizing real-world cough monitoring applications.

The outline of the paper is as follows. In Section II, we
discuss the data and its annotation. Next, we consider the
developed convolutional neural network used for classification
and its performance. Specifically, the distribution of the perfor-
mance over the available cohort is discussed in Section IV. In a
similar way, the acoustic environment is charted in Section V.

II. DATA

We conducted a prospective longitudinal study of continual
cough monitoring in COPD patients experienced in telemon-
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itoring. Participants underwent domiciliary cough monitoring
and completed a daily questionnaire for 90 days, scheduled
to be filled out in the morning. The study was reviewed and
approved by the North East-York Research Ethics Committee
(REC Ref: 15/N/0291), the United Kingdom Health Research
Authority and the Internal Committee Biomedical Experiments
of Philips Research. We will not discuss the protocol at length
but only in as far as it is relevant for the current paper.

The cough monitor consisted of a stationary microphone
paired wirelessly with a laptop computer. Based on previous
data revealing a high correlation between day and night time
cough frequencies [11], we chose the sleeping area in which
to position the microphone (typically the bedside table). The
cough monitoring system requires no user input following
initial installation.

The cough monitor analyzed the audio for features, and
stored the features at moments of non-stationary acoustic
scenes, see Section V. On top of that, a limited number of
one second long sound snippets were stored. These snippets
enabled annotation while ensuring privacy as it is impossible
to overhear any conversation. Data of a total of 28 patients
was considered useful as material for the development of a
deep learning algorithm. Only these snippets are used for the
development of a generic cough classifier for COPD patients
and not any of the stored audio features.

From the 28 patients, there were 20 having a partner and 8
were single. In almost all cases, coughs and non-coughs were
annotated, except for four cases where the annotators thought
it possible to distinguish between the patient and the partner.
Coughs from the partner are not part of either class.

The applicability of the developed algorithm depends on a
large degree on the annotation. Care was taken to have proper
annotations. A tool was developed to support the annotation.
During annotation, the audio snippets were presented as an
audio file and its waveform was shown on the screen. Partic-
ulars of visuals of a common cough sound (explosive phase,
intermediate phase, voiced phase) were known to the anno-
tators. Given the combined audio and visuals, the annotator’s
task was to decide whether or not there was a cough starting
with an explosive phase in the first half of the second.

The total number of coughs and non-coughs is highly
variable over the patients. The statistics of the annotations
and coughs over the patients is provided in Table I in terms
of minimum, maximum and median. In order to balance this
variation, patients with either very high amount of cough
and/or non-cough annotations were separated and only part
of their data was used. In this way at least a partial balance
was created without scaling all data down to the level of
the patient having the least amount of data. We note that
not only a balance in the number of coughs was deemed
necessary, but also in acoustic environments. Since the system
was placed in the home of patients, there is no control on
the background level, nor on the amount and level of other
sounds. In such free-living conditions, even seemingly simple
concepts as background level become difficult as, at minimum,
they become stochastic time-variant quantities.
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Annotations  Coughs Events
minimum 347 81 36975
median 2808 1225 358648
maximum 23204 8302 7253234
total 124393 48633 33499103
TABLE I

STATISTICS OF THE AMOUNT OF DATA OVER THE PATIENTS.

At the start of the project, a hold-out data set was created.
This consisted of 100 coughs and 100 non-coughs per patient.
For two patients this could not be attained due to a lack of
data: in these cases all the data of the limited category was put
in the hold-out set and no data of that category was therefore
present in the training.

III. SYSTEM

The audio snippets (1 s long, sampled at 8 kHz) were pre-
processed before entering the deep learning. Using a Mel
frequency scale, spectrograms were made. No MFCC were
created as deep learning tools profit from the redundancy of
information in adjacent frequency bins. The band splitting and
re-sampling, using frames of 20 ms length and 50% overlap,
transformed each snippet into a matrix of 98 x 20 samples.
This is the actual input to the deep learning system.

We note that in many cases of classification of time-related
events, there is an issue in terms of how to match processing
frames to detected events. Especially for acoustic events, starts
and stops are very hard to localize for the annotator and there
is no reason why these event boundaries would match with
frame boundaries introduced by the processing. In this study,
we have a full congruence between the annotator task and the
classifier task: both work on exactly the same data.

Several network topologies were explored during the testing
phase. The k-fold cross-validation method was applied on 10
randomly selected folds of data. The metric assessed was
AUC. Ultimately, it was decided that a relatively simple deep
learning system would be sufficient; extra layers of complexity
did not add to the performance. This is presumably due to
operating on the right data substrate, i.e., the pre-processing.
Various activation functions were tested as well, before going
in the validation phase using the hold-out set. The final
system had an average AUC value of 96.21 % with a standard
deviation of 40.27 %.

This ultimate system, see Fig. 1, consisted of two convolu-
tional layers with kernel size 3 x 3, a ReLU activation function
and stride 1. The max-pooling uses size 2 x 2 and stride 2.
The drop-out layer has 30% drop-out, and the dense layer has
a sigmoidal activation function. The two convolutional layers
involved 640+18,464 parameters; the dense layer contained
2945. In total, this amounts to 22,049 trainable parameters
in the system. This system is the one used for performance
evaluation using the hold-out set.

The system was implemented in Python with the help of
Keras, a high-level neural network API. The Matplotlib library
was used to visualize figures of the training process (loss and
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Fig. 1. Preprocessing and machine learning layers.

validation values) and performance of the model (AUC value)
while validating the system.

IV. PERFORMANCE

The final system was used in a leave-one-patient-out val-
idation test, i.e. the model was trained using all data except
those of the considered patient (and none of the data of the
hold-out). Next, the performance with the trained model was
measured for the left-out patient. The amount of training data
is only slightly dependent on the considered patient and the
ratio of the two categories is about 40/60%.

For each patient, the convolutional neural network is trained
using the Adam optimizer, with a default learning rate of
0.001, the binary cross-entropy loss function, a batch size
of 64, and a validation split of 10 % using the training data
from all other patients. The training converged after about 80
epochs, with training data being randomly shuffled at each
epoch.

In Fig. 2 we plotted the statistics of the resulting AUC. This
is done in terms of a cumulative cohort plot: given a certain
AUC, we determine which fraction of the considered patients
actually attains a level higher than this. Obviously, no part of
the cohort (cohort fraction=0) has an AUC above 1. As can
be seen from the plot, about 80 % of the cohort has an AUC
above 0.9.

V. DISCUSSION

Benchmarking of systems is typically very difficult as
often different databases have been used to evaluate the
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performance. Apart from the technical details (concerning e.g.
testing/training separation, actual usage of a hold-out data set,
etc.), it is often the question how representative the sounds are
for real-life, and also various performance numbers depend on
the prevalences of the two classes. In training and testing, the
prevalences are hardly ever in line with realistic scenarios.
Considering the prevalence-independent measures (sensitivity,
specificity and AUC), the general feeling is that generic cough
classifiers with excellent specificity (> 0.95) and a good
sensitivity (> 0.8) should be feasible [5]-[10]. Heaping up
all data over all patients puts the present system in that range
as well.

Particularly relevant is the question how such a generic
system would work in a real application scenario. This ques-
tion is hardly ever addressed in any detail, and we present
a first quantitative analysis highlighting the harshness of the
environment in which such a system would operate.

Consider a typical night, and suppose its length is 8 hours,
meaning 28,800s. Suppose furthermore we have a classifier
constructed as outlined above and, therefore, use 1s snippets
as input where in the first half of the second a cough has to
start. Then it would require to use an overlap of 50% leading
to more than 56,000 frames. Suppose that we desire that the
number of false identifications is below a certain number, than
the required specificity can be determined. For simplicity, we
say that if a person produces below 20 coughs over the course
of a night, we would not really be concerned, even if this
person is not a chronic cougher. To be below 20 would require
a specificity larger than 1 — (20/56000) = 0.9996. Such a
number is with the current state of the technique an absurd
high specificity only attainable with a sensitivity of about 0.

Now one might argue that the specificity need not be that
high. The data in training and testing may actually not reflect
the normal events occurring in the night and underestimate
all events easily detected as silence or background noises. For
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Fig. 3. Maximum number of events per day as function of cohort fraction.

this reason, we designed a relatively simple mechanism to
eliminate most of the silence periods and natural background
sounds for the patient data. The level at which this happens
is patient specific, and even typically time-dependent, thus a
fixed level is not an option. The system we selected is one con-
sidering changes in the spectral content. This was effectuated
by a low-order linear predictive coding (LPC) system similar
to that discussed in [12]. Next, we determined the number
of events (seconds) that could not be discarded offhand as
background. As expected, this number varies largely over the
population: some people live in a quiet and stable environment,
some in an acoustically rich environment, i.e. with constant
changes in the auditive scene. Statistics concerning the total
number of acoustic events per patient over the course of the
trial are provided in Table I. The number of segments needing
analysis per day ranged from 450 to 27,000 and, on a log
scale, is almost equally distributed over the cohort, see Fig. 3.
We took this logarithmic relationship between the number of
required classifications and the cohort percentage and derived
the required specificity, which then ranges between 0.85 and
0.9993. The graph is shown in Fig. 4 and shows that about
50% of the cohort could be served with a classifier specificity
performance of 0.99.

The performance figures obtained for personalized cough
classifiers using the same data and using XGBoost, but on
a different feature set [13] were found to be in the range
0.93 to 0.99 with a median of 0.97 over the patients. It
demonstrates that personalization of the classifier gives a boost
in performance, presumably partly due to a personalization to
the cough of the targeted person, but also due to a better fit
of the classifier to the particular acoustical environment the
monitor is operating in.

Given the performances as indicated by the AUC and
high specificity requirement due to acoustically challenging
environments, it is expected that for real-world applications
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Fig. 4. Minimum required specificity and cohort fraction.

some form of customization will be needed. Only a small part
of the population would be served with the performance of our
developed generic cough classifier and, presumably, with any
generic cough classifier. Nevertheless, to have a high-quality,
relatively simple, generic cough classifier at one’s disposal as
a starting point for customization is considered key.

VI. CONCLUSIONS

Due to the low prevalence of cough events, classifier per-
formance requirements for unobtrusive real-life applications
are high. We have shown that a general cough classifier
based on deep learning provides a system which achieves
high performance for a major part of the participants as
evidenced by the high AUC. We also argued that for real-
world applications some form of customization is likely to be
needed in view of the low prevalence of coughs relative to
other acoustic events.
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